Product Code Database
Example Keywords: strategy games -jewel $89
barcode-scavenger
   » » Wiki: Preimage Theorem
Tag Wiki 'Preimage Theorem'.
Tag

Preimage theorem
 (

Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar

In , particularly in the field of differential topology, the preimage theorem is a variation of the implicit function theorem concerning the of particular points in a under the action of a ...


Statement of Theorem
Definition. Let f : X \to Y be a smooth map between manifolds. We say that a point y \in Y is a regular value of f if for all x \in f^{-1}(y) the map d f_x: T_x X \to T_y Y is . Here, T_x X and T_y Y are the of X and Y at the points x and y.

Theorem. Let f: X \to Y be a smooth map, and let y \in Y be a regular value of f. Then f^{-1}(y) is a submanifold of X. If y \in \text{im}(f), then the of f^{-1}(y) is equal to the dimension of Y. Also, the of f^{-1}(y) at x is equal to \ker(df_x).

There is also a complex version of this theorem:.

Theorem. Let X^n and Y^m be two complex manifolds of complex dimensions n > m. Let g : X \to Y be a map and let y \in \text{im}(g) be such that \text{rank}(dg_x) = m for all x \in g^{-1}(y). Then g^{-1}(y) is a complex submanifold of X of complex dimension n - m.


See also
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs